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ABSTRACT

 

Ground w

 

ater is the main source of water in 
the Santa Clara–Calleguas ground-water basin that 
covers about 310 square miles in Ventura County, 
California. A steady increase in the demand for 
surface- and ground-water resources since the late 
1800s has resulted in streamflow depletion and 
ground-water overdraft. This steady increase in 
water use has resulted in seawater intrusion, 
inter-aquifer flow, land subsidence, and 
ground-water contamination. 

The Santa Clara–Calleguas Basin consists 
of multiple aquifers that are grouped into upper- 
and lower-aquifer systems. The upper-aquifer 
system includes the Shallow, Oxnard, and Mugu 
aquifers. The lower-aquifer system includes the 
upper and lower Hueneme, Fox Canyon, and 
Grimes Canyon aquifers. The layered aquifer 
systems are each bounded below by regional 
unconformities that are overlain by extensive basal 
coarse-grained layers that are the major pathways 
for ground-water production from wells and 
related seawater intrusion. The aquifer systems are 
bounded below and along mountain fronts by 
consolidated bedrock that forms a relatively 
impermeable boundary to ground-water flow. 
Numerous faults act as additional exterior and 
interior boundaries to ground-water flow. The 
aquifer systems extend offshore where they crop 
out along the edge of the submarine shelf and 
within the coastal submarine canyons. Submarine 
canyons have dissected these regional aquifers, 

providing a hydraulic connection to the ocean 
through the submarine outcrops of the aquifer 
systems. Coastal landward flow (seawater 
intrusion) occurs within both the upper- and 
lower-aquifer systems.

A numerical ground-water flow model of 
the Santa Clara–Calleguas Basin was developed 
by the U.S. Geological Survey to better define the 
geohydrologic framework of the regional ground-
water flow system and to help analyze the major 
problems affecting water-resources management 
of a typical coastal aquifer system. Construction of 
the Santa Clara–Calleguas Basin model required 
the compilation of geographic, geologic, and 
hydrologic data and estimation of hydraulic 
properties and flows. The model was calibrated to 
historical surface-water and ground-water flow for 
the period 1891–1993.

Sources of water to the regional ground-
water flow system are natural and artificial 
recharge, coastal landward flow from the ocean 
(seawater intrusion), storage in the coarse-grained 
beds, and water from compaction of fine-grained 
beds (aquitards). Inflows used in the regional flow 
model simulation include streamflows routed 
through the major rivers and tributaries; infiltration 
of mountain-front runoff and infiltration of 
precipitation on bedrock outcrops and on valley 
floors; and artificial ground-water recharge of 
diverted streamflow, irrigation return flow, and 
treated sewage effluent. 
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Most natural rechar

 

ge occurs through 
infiltration (losses) of streamflow within the major 
rivers and tributaries and the numerous arroyos 
that drain the mountain fronts of the basin. Total 
simulated natural recharge was about 114,100 
acre-feet per year (acre-ft/yr) for 1984–93: 
27,800 acre-ft/yr of mountain-front and bedrock 
recharge, 24,100 acre-ft/yr of valley-floor 
recharge, and 62,200 acre-ft/yr of net streamflow 
recharge.

Artificial recharge (spreading of diverted 
streamflow, irrigation return, and sewage effluent) 
is a major source of ground-water replenishment. 
During the 1984–93 simulation period, the average 
rate of artificial recharge at the spreading grounds 
was about 54,400 acre-ft/yr, 13 percent less than 
the simulated natural recharge rate for streamflow 
infiltration within the major rivers and tributaries. 
Estimated recharge from infiltration of irrigation 
return flow on the valley floors averaged about 
51,000 acre-ft/yr, and treated sewage effluent 
averaged about 9,000 acre-ft/yr. Artificial recharge 
as streamflow diversion to the spreading grounds 
has occurred since 1929, and treated-sewage 
effluent has been discharged to stream channels 
since 1930. 

Under predevelopment conditions, the 
largest discharge from the ground-water system 
was outflow as coastal seaward flow and 
evapotranspiration. Pumpage of ground water 
from thousands of water-supply wells has 
diminished these outflows and is now the largest 
outflow from the ground-water flow system. The 
distribution of pumpage for 1984–93 indicates that 
most of the pumpage occurs in the Oxnard Plain 
subareas (37 percent) and in the upper Santa Clara 
River Valley subareas (37 percent). The total 
average simulated pumpage was about 247,000 
acre-ft/yr (59 percent); of which about 146,000 
acre-ft/yr was from the Fox Canyon Groundwater 
Management Agency (FGMA) subareas and 
101,000 acre-ft/yr (41 percent) from the non-

FGMA subareas. Of the total 1984–93 pumpage, 
46 percent was contributed by natural recharge, 
22 percent was contributed by artificial recharge 
from diverted streamflow, 20 percent was 
contributed by irrigation return flow, 4 percent was 
contributed from sewage-effluent infiltration, 6 
percent was contributed from storage depletion, 
and 2 percent was contributed from coastal 
landward flow (seawater intrusion).

Seawater intrusion was first suspected in 
1931 when water levels were below sea level in a 
large part of the Oxnard Plain. The simulation of 
regional ground-water flow indicated that coastal 
landward flow (seawater intrusion) began in 1927 
and continued to the end of the period of 
simulation (1993). During wet periods or periods 
of reduced demand for ground water, the direction 
of coastal flow in the upper-aquifer system 
reverses from landward to seaward. During the 
1984–93 period, the simulated total net seaward 
flow was 9,500 acre-feet in the upper-aquifer 
system, which is considerably less than that 
simulated for predevelopment conditions. During 
the same period, total simulated landward flow in 
the lower-aquifer system was 64,200 acre-feet.

Water-level declines in the basin have 
induced land subsidence that was first measured in 
1939 and have resulted in as much as 2.7 feet land 
subsidence in the southern part of the Oxnard 
Plain. The model simulated a total of 3 feet of land 
subsidence in the southern part of the Oxnard 
Plain and as much as 5 feet in the Las Posas Valley 
subbasins. Model simulations indicate that most of 
the land subsidence occurred after the drought of 
the late 1920s and during the agricultural 
expansion of the 1950s and 1960s. The results also 
indicate that subsidence occurred primarily in the 
upper-aquifer system prior to 1959, but in the 
lower-aquifer system between 1959–93 owing to 
an increase in pumpage from the lower-aquifer 
system.
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The calibrated ground-w

 

ater flow model 
was used to assess future ground-water conditions 
based on proposed water-supply projects in the 
existing management plan for the Santa Clara–
Calleguas ground-water basin. All the projections 
of the proposed water-supply projects in the 
existing management plan have reduced pumpage 
in the FGMA areas which resulted in a reduction 
but not an elimination of storage depletion and 
related coastal landward flow (seawater intrusion) 
and subsidence, a reduction in streamflow 
recharge, and an increase in coastal seaward flow 
and underflow to adjacent subareas from the 
Oxnard Plain. A comparison of management 
simulations based on historical inflows and a 
spectral estimate of inflows shows increased 
coastal landward flow (seawater intrusion), storage 
depletion, and increased land subsidence due to a 
drought projected earlier in the spectral estimate of 
inflows than in the historical inflows. The spectral 
estimate probably provides a smoother and more 
realistic transition between historical and future 
climatic conditions.

The model also was used to simulate 
potential alternative water-supply projects in the 
Santa Clara–Calleguas ground-water basin. These 
seven alternative water-supply projects were 
proposed to help manage the effects of increasing 
demand and variable supply on seawater intrusion, 
subsidence, increased withdrawal from storage, 
and vertical and lateral flow between subareas and 
aquifers systems. Stopping pumpage primarily in 
the lower-aquifer system in the South Oxnard 
Plain subarea had the largest effect on reducing 
coastal landward flow (seawater intrusion) of all 
the potential cases evaluated. Shifting pumpage 
from the lower- to the upper-aquifer system in the 
South Oxnard Plain subarea yielded the largest 

combined effect on coastal flow with a reduction 
of coastal landward flow in the lower-aquifer 
system and coastal seaward flow from the upper-
aquifer system. A seawater-barrier injection 
project stopped coastal landward flow (seawater 
intrusion) in the upper-aquifer system but also 
resulted in large quantities of coastal seaward flow. 
The recharge of water in Happy Camp Canyon 
resulted in water-level rises that were above land 
surface (not feasible) in the East Las Posas Valley 
subarea but in no significant changes in hydrologic 
conditions in other parts of the basin.

 

INTRODUCTION

 

Ground w

 

ater from the regional alluvial-aquifer 
systems is the main source of water in the Santa Clara 
and Calleguas watersheds in southern California. In 
Ventura County, for the purposes of this study, the 
alluvial ground-water basins of these watersheds are 
referred to as the Santa Clara–Calleguas ground-water 
basin. Development of the water resources of the Santa 
Clara–Calleguas ground-water basin has steadily 
increased since the late 1800s, resulting in streamflow 
depletion, ground-water overdraft, seawater intrusion, 
inter-aquifer flow, land subsidence, and ground-water 
contamination. The extent of ground-water overdraft, 
which is the withdrawal of potable water from an 
aquifer system in excess of replenishment from natural 
and artificial recharge, varies throughout the basin. 
Overdraft is also dependent on climatic variability and 
associated increases in water use. Overdraft has been 
larger within selected subareas of the ground-water 
basin and in the deeper aquifers. However, there has 
been an increased amount of conjunctive use to 
compensate for the effects of the variability of surface-
water supplies and to mitigate the effects of ground-
water overdraft.
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A U.S. Geological Surv

 

ey (USGS) study of the 
hydrogeology of the Santa Clara–Calleguas Basin was 
completed  as part of the Southern California Regional 
Aquifer-System Analysis (RASA) Program (Martin, 
1986). The purpose of the Southern California RASA 
Program was to analyze the major problems and issues 
affecting ground-water use in southern California, 
including ground-water overdraft, streamflow depletion, 
subsidence, seawater intrusion, and ground-water 
contamination. Because of the large size of the study 
area and the large number of basins involved, only two, 
the Santa Clara–Calleguas Basin (coastal) and the 
Mojave River ground-water basin (desert), of the 89 
hydrologic subunits identified by the California 
Department of Water Resources (1964) were studied for 
the Southern California RASA Program (Martin, 1993). 
The basic assumption of the program was that certain 
characteristics of the geohydrologic processes and 
human activities that control or influence water 
resources are common to many of the basins or groups 
of basins. The development of the Santa Clara–
Calleguas Basin study is an extension of previous 
investigations in the nearby coastal aquifer systems in 
Santa Barbara, California (Martin and Berenbrock, 
1986; Freckleton and others, 1998).

 

Purpose and Scope

 

The purpose of this study is to acquire a better 

 

understanding of the hydrogeologic system in the Santa 
Clara–Calleguas Basin (fig. 1) and to develop a tool to 
help analyze the major problems affecting water-
resources management of a typical coastal aquifer 
system. The study included a reevaluation of the basin 
structure and stratigraphy of the water-bearing rocks 
and an evaluation of the hydrologic system under 
predevelopment, historical development, and future 
development conditions. The purposes of this report are 
to describe the regional ground-water flow model that 
was constructed for the RASA Program, to summarize 
the results of simulations of historical and future periods 
using the RASA model, and to describe the model 
limitations and the data needed for future model 
refinements. Also described in this report are ground-
water recharge, movement, and discharge.
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Approach

 

A re

 

gional model of ground-water flow that 
simulates the hydrologic system under pre- and 
post-development conditions was developed to evaluate 
the natural and human-induced controls on the regional 
water resources. Because water-resources development 
began relatively early in the coastal basins of 
California, there is very little quantitative information 
on predevelopment ground-water and surface-water 
conditions. This lack of data required coupling the 
calibration of the steady- and transient-state 
simulations to arrive at a combined fit for pre- and 
post-development conditions.

Previous studies of the aquifer systems (Mann 
and Associates, 1959; Turner, 1975) and numerical 
models of the hydrologic system (California 
Department of Water Resources, 1974a,b; Reichard, 
1995) were used as the starting point for the 
reevaluation of the stratigraphy and structure of the 
water-bearing units and to provide estimates of 
hydraulic properties of each unit. Reevaluation was 
based on additional geophysical data, geochemical 
data, and hydraulic data from selected existing 
production wells and from 23 new monitoring wells 
drilled throughout the basin by the USGS (Izbicki and 
others, 1995; Densmore, 1996). Estimates for many of 
the hydraulic properties and for the quantities and 
locations of recharge and discharge needed to simulate 
ground-water flow in the major water-bearing units 
generally were unavailable; therefore, indirect 
estimates, which were modified during the calibration 
of the numerical model, were required.

 

Description of Study Area 

 

The Santa Clara (h

 

ydrologic unit 18070102) and 
Calleguas (hydrologic unit 18070103) Basins are 
coastal watersheds that principally drain parts of 
Ventura and Los Angeles Counties; they have a total 
drainage area of 2,010 mi

 

2

 

 

 

(fig. 1). Almost 90 percent 
of the basin surface is characterized by rugged 
topography; the remainder consists of valley floor and 
coastal plain composed of a northeast-trending set of 
anticlinal mountains and synclinal valleys in the 
Transverse Ranges physiographic province. The 
onshore part of the Santa Clara–Calleguas alluvial 
basin is about 32 mi long and includes about 310 mi

 

2

 

. 

 

The ground-water basin extends as much as 10 miles 

offshore and includes an additional 193 mi

 

2

 

. 

 

The 
sloping offshore plain and underlying aquifers are 
truncated by steeply dipping submarine cliffs that are 
dissected by several submarine canyons. 

The Santa Clara–Calleguas Basin is a regional 
ground-water basin that can be divided into 12 onshore 
subbasins (fig. 1). The coastal subbasins extend 
offshore beneath the gently sloping submarine shelf. 
The ground-water subbasins are subareas within the 
surface-water drainage subbasins, and many of their 
boundaries are aligned with known faults and other 
geologic features. The Piru, Fillmore, Santa Paula, and 
Mound subbasins and the northern part of the Oxnard 
Plain known as the Oxnard Plain Forebay subbasin 
compose the Santa Clara River Valley. The Santa Rosa 
Valley, East and South Las Posas Valley, and North and 
South Pleasant Valley subbasins and the southern part 
of the Oxnard Plain subbasin compose the Arroyo 
Simi–Arroyo Las Posas–Conejo Creek–Calleguas 
Creek drainage basin. In the West Las Posas Valley 
subbasin, Arroyo Hondo and Beardsley Wash flow into 
Revolon Slough, which flows along with Calleguas 
Creek into Mugu Lagoon (see figure 4 in the “Surface 
Water” section). These three drainages cross parts of 
the coastal subbasin known as the Oxnard Plain.

The Santa Clara River and the Calleguas Creek 
discharge directly to the Pacific Ocean. The onshore 
ground-water basin is bounded by the Sulfur Mountain 
and the Topatopa Mountains on the north, the Santa 
Susana Mountains and the Simi Hills on the east, and 
the Santa Monica Mountains on the south (fig. 1). 
Mountain peaks, which exceed 6,700 ft in altitude, rise 
above numerous narrow valleys and streams that are 
tributary to the Santa Clara River and Calleguas Creek 
drainage basins. The west-trending Oak Ridge, South 
Mountain, and Santa Susana Mountains separate the 
Santa Clara River Valley from the Las Posas Valley. 
The west-trending Las Posas and Camarillo Hills 
separate Las Posas Valley from Pleasant Valley. These 
intermontane alluvial valleys grade into the coastal 
flood plains in the Oxnard Plain and the Mound 
subbasins. The coastal flood plain continues offshore as 
a gently sloping submarine shelf of the Santa Barbara 
Channel. The submarine shelf is bounded on the west 
by steeply sloping submarine cliffs where the 
water-bearing formations crop out. The shelf is 
dissected by the Hueneme and the Mugu submarine 
canyons and several unnamed smaller submarine 
canyons (fig. 1). The larger submarine canyons dissect 
the submarine shelf to the present-day shoreline.
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Climate

 

The climate of the basin is of the mediterranean 

 

type with 85 percent of the rainfall occurring between 
November and April, typical of the southern California 
coastal area. Average annual precipitation is about 
14 in. at Port Hueneme along the coast, about 17 in. 
near Santa Paula in the intermediate altitudes of the 
Santa Clara River Valley, and more than 25 in. in the 
surrounding mountains (Ventura County Public Works 
Agency, 1990, 1993). Daily mean temperatures range 
from as high as 89οF along the coast in late summer 
and early fall to below freezing in the bordering 
mountains during winter. Mean pan-evaporation rates 
range from 59 in/yr at Casitas Dam at Ventura County 
Flood Control District (VCFCD) Station Number 4 to 
73 in/yr at Lake Bard at VCFCD Station Number 227 
(Ventura County Public Works Agency, 1990, 1993).

The climate is seasonally variable and has been 
variable through time (fig. 2). The cumulative 
departure of tree-ring indices and precipitation can be 
used to divide periods of the climatic record into wet 
and dry climatic periods. Wet climatic periods are 
determined using the rising limb of the cumulative 
departure curve, and dry climatic periods are 
determined using the falling limb of the cumulative 
departure curve. The cumulative departure of tree-ring 
indices for southern California for 1458–1966 
(National Atmospheric and Oceanic Administration, 
1994) indicates an apparent shift in the frequency and 
amplitude of wet and dry periods after the early 1700s. 
Prior to the early 1700s, wet and dry periods were 
relatively long (20 to more than 60 years); whereas 
after the early 1700s, wet and dry periods were shorter 
(5 to 20 years) (fig. 2A). The wet and dry periods 
determined from tree-ring indices for 1770–1965 
generally are in agreement with available precipitation 
records for Port Hueneme and Santa Paula and are 
related to periods of major droughts and floods 
(fig. 2B).

Population

The Santa Clara–Calleguas Basin was settled 
and populated by Native American Indians of the 
Shumash Tribes. Spanish missionaries established 
Mission San Buena Ventura in 1787. In the early 1800s, 
Jesuit Fathers from the San Buena Ventura Mission 
established an asistencia (Ventura Mission outpost) 
where the city of Santa Paula is now located (Freeman, 
1968). These colonies and related Spanish land grants 

developed the initial agrarian and ranching industry in 
the river valleys. The town of San Buena Ventura 
(hereinafter referred to as “Ventura”) became the 
county seat. By 1930, Ventura County had a total 
population of 54,976; Ventura and Santa Paula were the 
most populous cities. Ventura, which was largely 
supported by the oil industry, had a population of 
11,603. Santa Paula and Fillmore, which were the 
principal towns in the citrus area, had populations of 
7,452 and 2,890, respectively. Oxnard, the center of the 
beet-sugar industry in Ventura County, had a 
population of 6,285 (California Department of Public 
Works, 1934). By 1970, the population in Ventura 
County increased to 378,497 as various small 
unincorporated settlements grew into towns. The 
population increased to 535,700 by 1980, and to 
686,900 by 1992—a 28 percent increase. Since the 
1960s, a large part of the population increase was 
related to the urbanization of Ventura County. 

Land and Water Use

Prior to the 1900s, most land in the Santa Clara–
Calleguas Basin was used for grazing cattle and 
dry-land farming. In the early 1900s, agricultural and 
petroleum production became the chief economic 
activities. As in all the coastal basins, urbanization 
since the late 1940s resulted in the transfer of 
agricultural lands to residential and commercial uses, 
especially in the Oxnard Plain. In the late 1940s, the 
turbine pump was introduced for pumping ground 
water, and in the early 1950s, the introduction of the 
refrigerated railroad car provided long-range markets 
for fresh produce. As a result, agriculture was 
transformed from predominantly seasonal dry-land 
farming of walnuts and field crops to predominantly 
year-round irrigated farming of citrus, avocados, and 
truck crops, and water use increased to a historical high 
during the 1950s. Currently, about 80 percent of the 
ground-water and surface-water supply is used for 
agriculture. Agricultural land use increased less than 
5 percent and urban land use increased from 39 to 51 
percent between 1969 and 1980. Since 1980, urban 
growth has continued and urban land use has remained 
the dominant land use in the basin. Because of the 
proximity to the Los Angeles metropolitan area, growth 
may continue with further transformation from an 
agriculture-based economy to an urban and industrial 
economy. An excellent summary of the development of 
water in Ventura County is given by Freeman (1968).
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SURFACE WATER

Runoff from precipitation in the upland areas 
that surround the Santa Clara–Calleguas Basin is the 
predominant source of natural streamflow and 
ground-water recharge. As agriculture developed, some 
streamflow was diverted for irrigation. Since the 1950s, 
imported water from northern California has been 
combined with local surface water and collectively 
used for artificial recharge. Discharge of reclaimed 
sewage effluent, which began in the late 1930s, 
provides an additional source of water to the surface-
water and ground-water systems in parts of the basin.

Precipitation Estimates

Precipitation, and related surface-water flow, has 
been variable through time, and is the major source of 
ground-water recharge. For this study, precipitation and 
streamflow data and statistical relations determined 

from these data were segregated into wet and dry 
seasonal periods to reconstruct historical runoff and 
streamflow. The cumulative departure curve of 
precipitation for Port Hueneme was used to divide 
periods of record into wet and dry climatic periods 
(fig. 2). The wet and dry climatic periods were 
determined using the rising and falling limbs of the 
cumulative departure curve, respectively. 

As noted earlier, for the past few centuries, 
cumulative departure of the tree-ring indices for 
southern California indicates an apparent shift in the 
frequency and amplitude of the wet and dry periods 
after the early 1700s; prior to the early 1700s wet and 
dry periods were relatively long (20 to more than 
60 years) whereas after the early 1700s these periods 
were relatively short (5 to 20 years) (fig. 2A). 
Frequency analyses (spectral) of tree rings, 
precipitation, and ground-water levels indicate climatic 
cycles of 22, 5.3, and 2.2–2.9 years for the period of 
record (Appendix 3; Hanson and Dettinger, 1996). 
Collectively, these cycles account for 60 percent of the 
variation in precipitation. Winter and spring rainfall is 
derived largely from arctic-northern frontal storms that 
may be related to the long term (22 year) climatic 
cycles of the Pacific decadal oscillation. Intermediate 
(5.3 year) cycles contribute to fall and winter rainfall 
and may be related to a combination of storms related 
to a northerly flow of moisture from El Niño and 
monsoonal flow from the central Pacific Ocean. 
Additional moisture may be associated with meridianal 
flow of the jetstream and related extracyclonic storms 
that occur during the short-term (2.2–2.9 year) cycles 
of El Niño years in both wet and dry periods (fig. 2A). 
Examples of exceptional storm-type related events that 
may be attributed to subtropical extracyclonic storms 
include a short-lived, intense rain storm, such as 
occurred in September of 1910 during a dry period; a 
relatively wet year, such as 1962, during a dry period; 
and historic flooding, such as in 1853. Freeman (1968) 
originally segregated wet and dry periods on the basis 
of precipitation records from Santa Paula and 
precipitation estimates reconstructed from crop indices 
for 1769 through 1965. Freeman demonstrated a strong 
correlation between the longer term wet and dry 
periods and observed hydrologic events in southern 
California, such as changes in stage of lakes and 
reservoirs, and droughts and floods (fig. 2B).
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For this study, six alternating climate cycles that 
resulted in six wet and six dry periods between 1891 
and 1993 were identified on the basis of the cumulative 
departure curve for precipitation measured at Port 
Hueneme (fig. 2A). The climate cycles were separated 
into wet-year and dry-year periods as follows:
CYCLE DRY-YEAR PERIOD WET-YEAR PERIOD

     1 1891–1904 1905–1918

     2 1919–1936 1937–1944

     3 1945–1951 1952–1958

     4 1959–1964 1965–1969

     5 1970–1977 1978–1986

     6 1987–1991 1992–1993
This segregation shows good agreement with the 

tree-ring indices and the climate periods delineated by 
Freeman (1968) (fig. 2A,B). Selected coastal 
precipitation stations at Ventura, Oxnard, Port 
Hueneme, and Camarillo were used to assess the 
segregation of data within the wet- and dry-year 
seasons (fig. 3, table 1). Although there are some wet 
years in dry periods and dry years in wet periods, the 
seasonal mean coastal precipitation for these multiple-
year wet- and dry-year period groupings is not 
significantly different from the seasonal mean 
precipitation grouped for individual wet and dry years 
(independent of wet- and dry-year periods) but is 
significantly different from the period-of-record mean 
for all seasons except summer (table 1). This general 
segregation of recent historical climatic variability into 
wet- and dry-year periods were used to reconstruct the 
historical estimates of precipitation and streamflow. 
Ground-water recharge and changes in ground-water 
demand measured or estimated from pumpage data 
were categorized on the basis of these wet and dry 
periods.

Kriged estimates of average total seasonal 
precipitation for wet and dry winters, springs, 
summers, and falls were made from available data from 
the Ventura County Flood Control District precipitation 
stations for 1891 to 1991 (fig. 3A–H). Data were not 
available for individual stations for the entire period of 
estimation. The spatial distributions of seasonal 
precipitation for wet and dry periods were similar for 

winter and fall. Spring and summer precipitation 
patterns, however, showed a small shift from relatively 
more precipitation in the northern mountains during 
wet springs and summers to relatively more 
precipitation in the southeastern mountains during dry 
springs and summers (fig. 3C–F). The largest increase 
in seasonal precipitation was between wet and dry 
winters (fig. 3A,B). The ratio of wet- to dry-season 
precipitation was 1.8 for winter, 1.6 for spring, 1.1 for 
summer, and 1.2 for fall.

Streamflow

The Santa Clara River Basin drains the area to 
the north and east of the Santa Clara–Calleguas 
ground-water basin; its major tributaries are Piru, 
Hopper, Pole, Sespe, Santa Paula, and Ellsworth 
Creeks (fig. 4). Calleguas Creek and its major 
tributaries, Conejo Creek and Arroyo Simi–Las Posas, 
drain the areas to the south and east of the alluvial 
basin. Revolon Slough and its major tributaries, Arroyo 
Hondo and Beardsley Wash (fig. 4), drain the western 
part of the Las Posas Valley and the southwestern part 
of the Oxnard Plain. Streamflow represents the major 
natural source ground-water recharge to the basin. The 
steadily increasing use of the surface-water and 
ground-water resources of the Santa Clara–Calleguas 
Basin since the late 1800s has resulted in streamflow 
depletion.

Streamflow measurements were made as early as 
the late 1800s (Grunsky, 1925), but continuous 
measurement at permanent gaging stations was not 
undertaken until 1912 on Piru Creek and not until 1927 
on the Santa Clara River (fig. 4). Gaging stations also 
were established on other Santa Clara River tributaries 
(fig. 4) starting in 1927. Streamflow gaging stations 
were first established on the Arroyo Simi in 1934 and 
on Conejo Creek in the 1970s. Continuous gaging of 
streamflow at downstream sites began at Montalvo on 
the Santa Clara River (11114000) in 1955, on the 
Calleguas Creek above U.S. Highway 101 (11106550) 
in 1971, and at Camarillo (11106000) in 1968 (fig. 4). 
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Figure 3.  Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. A, Wet winter. B, Dry winter. C, Wet spring. D, Dry 
spring. E, Wet summer. F, Dry summer. G, Wet fall. H, Dry fall. Number of seasons available varies between stations.
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Figure 3—Continued. Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. B, Dry winter.
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Figure 3—Continued. Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. C, Wet spring.
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Figure 3—Continued. Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. D, Dry spring.
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Figure 3—Continued.Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. E, Wet summer.
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Figure 3—Continued. Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. F, Dry summer. 
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Figure 3—Continued. Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. G, Wet fall.
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Figure 3—Continued. Kriged average total seasonal precipitation 1891–1991 for wet and dry climatic periods by season. H, Dry fall.
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Table 1. Summary of coastal precipitation statistics for the Santa Clara–Calleguas Basin, Ventura County, California

[Data from Ventura County, Department of Public Works (Dolores Taylor, written commun., 1992). Grouping: Dry years represent all years in which 
precipitation was less than the mean for the period of record; wet years represent all years in which precipitation was more than the mean for the period of 
record. Dry-year periods are periods of decreasing cumulative departure for precipitation for the period of record and wet-year periods are periods of 
increasing cumulative departure. W is a value of Shapiro–Wilk Statistic normality test where values close to 1 indicate a significant probability of a normally 
distributed group of mean total seasonal precipitation.%, percent; —, reference group]

Precipitation period
(group number)

Grouping
Mean/standard deviation, 

 in inches
 (number of samples)

W: Normality test
Significant difference 

in means at  95-percent
 level between groups?

Coastal winter (1) All years 8.37/5.19(101) 0.93 —

Coastal winter (2) Dry years 5.47/2.48(70) .97 (1)–(2):Yes
(2)–(3): No

Coastal winter (3) Dry-year periods 6.24/3.28(58) .93 (1)–(3):Yes

Coastal winter (4) Wet years 14.93/3.20(31) .94 (1)–(4):Yes
(4)–(5): Yes

Coastal winter (5) Wet-year periods 11.19/5.85(43) .96 (1)–(5):Yes

Coastal spring (1) All years 1.15/1.13(100) .83 —

Coastal spring (2) Dry years .31/.73(70) .48 (1)–(2):Yes
(2)–(3): Yes

Coastal spring (3) Dry-year periods 1.05/.96(57) .87 (1)–(3):No

Coastal spring (4) Wet years 1.03/1.10(30) .83 (1)–(4):No
(4)–(5): No

Coastal spring (5) Wet-year periods 1.30/1.33(43) .84 (1)–(5):No

Coastal summer (1) All years .30/.66(100) .53 —

Coastal summer (2) Dry years .30/.73(70) .48 (1)–(2):No
(2)–(3): No

Coastal summer (3) Dry-year periods .26/.68(57) .43 (1)–(3):No

Coastal summer (4) Wet years .28/.48(30) .66 (1)–(4):No
(4)–(5): No

Coastal summer (5) Wet-year periods .36/.65(43) .64 (1)–(5):No

Coastal fall (1) All years 4.11/2.74(99) .94 —

Coastal fall (2) Dry years 4.01/2.68(69) .95 (1)–(2):No
(2)–(3): No

Coastal fall (3) Dry-year periods 3.86/2.63(56) .94 (1)–(3):No

Coastal fall (4) Wet years 4.33/2.90(30) .94 (1)–(4):No
(4)–(5): No

Coastal fall (5) Wet-year periods 4.44/2.87(43) .95 (1)–(5):No
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Hydrographs of daily mean streamflow for eight 
gaging stations in the Santa Clara–Calleguas Basin are 
presented in figure 5. Natural streamflow in all the 
major streams and tributaries in the basin is 
intermittent to ephemeral (fig. 5). Runoff from 
precipitation primarily during December through April 
results in natural streamflow in the winter and spring. 
Most of the streamflow occurs as floodflow. Some of 
the flows recharge the ground-water system and the 
remainder discharges into the Pacific Ocean. Sespe 
Creek is the largest contributor of streamflow to the 
Santa Clara River system and Piru Creek is the second 
largest (table 2). Major streams generally have fewer 
intermittent reaches or become perennial during 
wet-year periods and have more floodflows and larger 
baseflows (fig. 5). The Santa Clara River, Piru Creek, 
Arroyo Simi, and Conejo Creek all have components of 
regulated flow. The average and median streamflow, 
and the number of days of flow for the total period of 
record and for the wet and dry periods defined for this 
study (fig. 2) are summarized in table 2. These 
components of regulated flow increased the mean flow 
and decreased the number of days with no flow 
(table 2).

Major floods generally occur during wet periods 
but can occur during dry-year periods (figs. 2 and 5). In 
1969, the peak discharge for the largest flood for the 
period of record was more than 110,000 ft3/s at the 
Montalvo gage (11114000) on the Santa Clara River 
(not shown in figure 5). In the Santa Clara River and 
most of its major tributaries, multiple-year recession 
periods generally follow wet periods for unregulated 
streamflow (fig. 5). During these subsequent years, the 
gaged outflow at Montalvo can be greater than the 
gaged inflow of the Santa Clara River and its major 
tributaries.

Streamflow-duration curves of gaged streams 
show major differences between wet and dry periods 
(fig. 6). Streamflow on Piru, Pole, Sespe, and Santa 
Paula Creeks is perennial during wet years (fig. 6 
C,D,F,G). The magnitude of daily streamflow increases 
by a factor of three to five from dry to wet years for 
streamflows of the same frequency at the seven gaging 
stations in the Santa Clara–Calleguas ground-water 
basin (fig. 6 A–G).

Since the construction of the Santa Felicia Dam 
in 1955, controlled releases of water from Lake Piru 
have resulted in fewer days of no flow in the Santa 
Clara River; however, average annual streamflow in the 
river was reduced by 35 percent during the 21-year 
period (1956–75) after construction of the dam (Taylor 
and others, 1977). Since 1969, discharge owing to the 
release of treated wastewater from Los Angeles County 
and imported water from Castaic Lake has increased 
the minimum flow in the Santa Clara River across the 
Los Angeles–Ventura County line from less than 
10 ft3/s to about 20 ft3/s (fig. 5A). In the Calleguas 
Creek drainage, regulated flow has resulted in 
additional baseflow owing to discharge of treated 
municipal sewage along Arroyo Simi and Conejo 
Creek since about 1970 (fig. 5B) and discharge of 
shallow ground water from dewatering wells. Since 
1962, the release of sewage effluent in Conejo Creek 
has resulted in an increase in baseflow from 0.5 to 
15 ft3/s (fig. 5). The pumping of shallow ground water 
for dewatering upstream in Simi Valley has resulted in 
additional baseflow on the Arroyo Simi at the Madera 
Road Bridge (fig. 5G)—an increase from less than 0.1 
ft3/s to about 4 ft3/s since 1969. Streamflow has 
become more intermittent on the Santa Clara River at 
Montalvo since 1929 owing to diversions at Saticoy 
and Freeman. Based on historical basinwide estimates 
of streamflow and runoff, ungaged tributary runoff 
provides the second (California Department of Water 
Resources, 1975; tables 23 and 24) or third (California 
Department of Public Works, 1934; table 59) largest 
contribution to streamflow. Diversion from Sespe 
Creek, as well as numerous smaller intermittent 
diversions from the Santa Clara River for irrigation, is 
still occurring. Diversions from Piru Creek below Santa 
Felicia Dam and from the Santa Clara River at the 
Freeman Diversion provide water for artificial 
recharge. Controlled releases from Lake Piru Reservoir 
are conveyed down the natural stream channel to these 
artificial-recharge spreading grounds, supplementing 
the intermittent natural streamflow during the generally 
dry summer and fall months.
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Table 2. Summary of gaged streamflow data for selected streams in the Santa Clara–Calleguas Basin, Ventura County, California

[Streamflow gaging station (station number): preceding the slash is the U.S. Geological Survey gaging station number and following the slash is the Ventura 
County Flood Control District gaging station number. --, no station number provided; —, no estimate provided]

1Streamflow data combined with streamflow data from Santa Clara River near Piru (11109000) for period 1927–32. Numbers represent the period 
without wastewater flowing into the basin along the Santa Clara River from Los Angeles County for climate periods.

2Values are for the periods with and without wastewater flowing into the basin along the Santa Clara River from Los Angeles County.
3Streamflow data was combined with streamflow data from Fillmore Irrigation Canal diversion (11113001/—) for period 1940–91.
4Streamflow data was combined with streamflow data from Santa Clara River Diversion at Saticoy (11113910/—) for period 1928–92. Values also 

represent the period with releases from Lake Piru.
5Values represent the period without wastewater flowing into the basin along the Santa Clara River from Los Angeles County.
6Values represent the period with and without wastewater flowing into the basin along the Santa Clara River from Los Angeles County, respectively. 

Values also represent the period with releases from Lake Piru.
7Values represent the period without dewatering pumpage flowing into the basin along Arroyo Simi.

Streamflow gaging station
(station No.) 

[period of record]

Arithmetic
average streamflow

(cubic feet per second)

Median/geometric 
mean streamflow

(cubic feet per second)

Number of 
no-flow days

Time averaged
streamflow used 

in predevelopment 
model

(cubic feet 
per second)

Total 
period

Wet 
periods

Dry 
periods

Total
 period

Wet 
periods

Dry 
periods

Total 
period

Wet 
periods

Dry 
periods

Santa Clara River at county line1 
(11108500 / 707)

Unregulated flow 
    [1928–32, 1953–71]

32.1 52.5 14.5 2.6/4.3 3.2/4.6 1.9/4.0 801 100 701 2.0

Santa Clara River at county line 
    (11108500 / 707)
Regulated and unregulated flow 

[1953–91]2

48.3 69.3 26.2 17.0/11.4 20.0/ 13.1 14.0/ 9.7 464 100 364 —

Piru Creek near Piru
    (11110000 / —)
    [1912–13, 1927–54]

57.3 100 23.7 12.0/12.8 22.0/23.4  5.1/7.2 1,038 4 1,034 13.0

Piru Creek below Santa Felicia Dam
    (11109800 / 714)
    [1956–92]

42.1 54.6 28.7 12.0/12.2 8.7/14.5 7.2/10.3 544 450 94 —

Hopper Creek near Piru
    (11110500 / 701)
    [1931–90]

6.2 9.7 2.4 .3/1.1  .7/ 1.6 .01/.6 7,765 2,660 4,032 0.3

Pole Creek at Sespe Avenue, 
Fillmore

    (–/ 713)
    [1974–91]

2.3 3.5  .7 .6/.6 1.0/1.0 .3/.3 25 2 23 0.6

Sespe Creek near Fillmore
    (11113000 / 710)3 

    [1940–91]

125.4 179.8 64.2 17.0/20.7 26.0/30.7 10.0/13.2 0 0 0 18.0

Santa Paula Creek near Santa Paula
    (11113500 / 709)
    [1928–91].............

22.5 36.5 10.8 4.5/5.4 7.2/8.7 2.9/3.5 854 0 854 4.5

Santa Clara River at Montalvo 
    (11114000 / 708)4

    [1955–71]5

222.2 319.8 113.0 25.0/47.9 33.9/71.5 18.2/30.7 1,244 669 575 —

Santa Clara River at Montalvo 
    (11114000 / 708)4

    [1955–92]6

257.4 385.4 114.2 46.1/59.7 96.0/106.8 24.5/32.2 1,392 671 721 —

Arroyo Simi near Simi 
    (11105850/—)7 and 
Arroyo Simi at Royal Avenue  

(–1/802) 
    [1934–64].............

1.3 2.1 .5 0/.6 0/.8 0/.3 10,282 4,801 5,481 0

Arroyo Simi near Simi
     (11105850/--)7 and 
Arroyo Simi at Royal Avenue  

(–/802)
    [1934–69]

2.3 3.7 .5 0/.9 0/1.5 0/.3 11,942 6,461 5,481 0
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Irrigation Diversions

Diversion of natural streamflow (fig. 4) was the 
first water-resources development for agricultural use 
in the Santa Clara–Calleguas ground-water basin. 
Major diversions from the Santa Clara River and its 
tributaries were constructed in the middle to late 1800s. 
The continued growth of agriculture resulted in 
irrigation and return-flow diversions in the early 1900s 
that captured most of nonflood flows from the Santa 
Clara River. The diversions on the tributaries generally 
were small, permanent structures on bedrock designed 
to capture the low perennial baseflows (less than 1 to 
10 ft3/s) during summer and fall. Mainstem diversions, 
however, commonly were temporary structures that 
were rebuilt within the shifting channel after the 
recession of floodflows. Other historically larger 
diversion canals (not shown on figure 4), such as 
Farmers Ditch, Santa Clara Water and Irrigation 
Company Canal, Camulos Ranch Ditch on the Santa 
Clara River, and Fillmore Land and Water Company 
Canal on Sespe Creek, conveyed diversions of 10 to 40 
ft3/s [shown in Adams (1913, pl. XVI), and Predmore 
and others (1997)]. Most of these diversions operated 
within the subbasins and supplied irrigation water to 
crops on the adjacent flood plain. The larger mainstem 
diversions typically were located where there was 
sustained flow, which generally occurs below the 
confluence with major tributaries where natural 
sediment deposited by inflow causes riffles and 
ponding of streamflow. Some of the mainstem 
diversions along the Santa Clara River were built near 
the upstream side of the constrictions at the subbasin 
boundaries where there is a mixture of streamflow and 
ground-water discharge. The diversions of surface 
water supplied a significant amount of the water used 
for irrigation prior to the early 1930s when irrigation 
demand exceeded the surface-water supplies largely 
owing to the 1923–36 drought.

Imported water

Since 1971, surface water has been imported 
from northern California and routed through a series of 
reservoirs constructed by the UWCD for controlled 

release during the growing season. Water from northern 
California is imported by the UWCD to Pyramid Lake 
and Lake Piru where it periodically is released into Piru 
Creek and the Santa Clara River channels. Water has 
been imported to Castaic Lake since the 1970s where it 
is released into the Santa Clara River channel. This 
imported water, along with treated sewage effluent 
from Los Angeles County, increases the perennial 
baseflow at the streamflow-gaging station on the Santa 
Clara River at the Los Angeles–Ventura County Line 
(fig. 5A). Most of the water brought into the basin since 
1964 was imported by the CMWD using Metropolitan 
Water District (MWD) pipelines—about 1,863,000 
acre-ft of water from 1964 through 1993. The water 
was used primarily for municipal supplies (91 percent), 
and a small part (9 percent) was used for irrigation. 
Some of this water may have entered the ground-water 
flow system as sewage-effluent discharge or as 
percolation of excess applied irrigation water 
(hereinafter referred to as irrigation return flow) in the 
Las Posas Valley and Pleasant Valley subbasins. Even 
though most of the water imported by the CMWD that 
is used for municipal supply becomes treated sewage 
effluent that is discharged to the Pacific Ocean, this 
imported water has helped reduce growth in ground-
water pumping in the Oxnard Plain, Pleasant Valley, 
and Las Posas Valley subbasins.

Sewage Effluent

Sewage effluent is discharged directly to the 
Pacific Ocean, the Santa Clara River, Calleguas Creek, 
and Conejo Creek and to percolation ponds for direct 
infiltration or it was reused for irrigation. Most of the 
sewage effluent is either directly discharged to the 
Pacific Ocean or is discharged to stream channels in the 
Oxnard Plain, where low-permeability channels do not 
allow significant infiltration to the regional ground-
water flow system. Treated sewage effluent is included 
in the streamflow that enters the basin at the county line 
along the Santa Clara River, Calleguas River, and 
Conejo Creek. These contributions to streamflow are 
part of the gaged streamflow on these rivers.


